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ANALYSIS OF THE EFFECT OF THERMOELASTIC STRESSES OF THE 

CRYSTALLIZATION OF A SPHERE UNDER WEIGHTLESS CONDITIONS 

I. V. Belova and A. L. Ovsyannikova UDC 539.319 

In the crystallization of a sphere initially completely molten and then cooled slowly 
over its entire surface, thermoelastic stresses are created in the solid phase. If the in- 
tensity of the shear streasses reaches the critical value -- the yield point -- a region of 
plastic deformation appears. A description was given in [I] of experiments involving crys- 
tallization of copper and Silver specimens in the form of spheres (the amount of impurity 
was 0.001% in the copper specimen and 0.004% in the silver specimen) under weightless condi- 
tions. It was noted that the structure of the specimens obtained indicates a nearly complete 
lack of convective motion in the melt. It is interesting to study the effect of thermo- 
elastic stresses on the crystallization of specimens under weightless conditions and on the 
structure of the crystals obtained. 

The study [2] indicated that it might be possible to form a shrinkage cavity during the 
crystallization of a sphere if the solid phase is denser than the liquid phase. The occur- 
rence of thermoelastic stresses is one possible cause of shrinkage cavity formation. In the 
model in [2], the cavity begins to form at the very beginning of the crystallization process. 
Thus the stresses in the solid phase are due only to incompatible thermal strains, not to 
shrinkage of the material, and it can be anticipated that the resulting stresses will not 
have an appreciable effect on subsequent crystallization. 

Here we study the process of crystallization without the formation of a shrinkage cavity. 

I. The material is assumed to be incompressible in the liquid state and it is assumed 
that the crystallization process occurs in the absence of external effects (under weightless 
conditions and in vacuum). 

The crystallization process was studied numerically for metals (copper, aluminum, silver) 
in [3] and for semiconducting materials (germanium, silicon) in [4]. The problem was for- 
mulated in an isotropic approximation for all of the materials. 

We introduce a spherical coordinate system r, ~ , 6 with its origin at the center of 
the sphere. We have the following relations for the liquid phase: 

nt - V2% r 2 Or \ r ~ - ~ r  ]; ( 1 . 1 )  

P . . . .  p ( t ) l ,  (1.2) 

where T2, P2, c2, and X2 are the temperature, density, specific heat, and thermal conductivity 
of the liquid phase; P is the stress tensor; I is a unit tensor. 

The behavior of the material in the solid phase is described by a system of thermoelasto- 
plasticity equations. Due to spherical symmetry, only the normal components of the stress 
tensor ~r,or %, are nontrivial, while o~p-:o 0. The following equilibrium equation holds through- 
out the region of the solid state 
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The relations of Hooke's law are satisfied in the elastic region 

igF I 
( C ~ r - - 2 v g ) - { - c z  T - - T , ) "  o,- = ~ - ,  ~: ( ~t , , '  

])V ] "-- "(~r) -~- O~ (V 1 TO), r - E ((l  - -  v') O',p 

(I .3) 

( 1 . 4 )  

( 1 . 5 )  

where E is Young's modulus; v is Poisson's ratio; ~ is the coefficient of linear expansion; 
W is the displacement of particles of the solid phase; To is the melting point. 

Figure I shows the following regions which come into existence during crystallization 
of the sphere: I) region of plastic strains; 2) region of elastic strains; 3) liquid phase. 
The von Mises condition is satisfied in the plastic region 

2 
1% =.~r I = ~-~k, (1 .6)  

where k is the yield point. 

The occurrence of thermoelastic stresses is examined only during crystallization of the 
sphere, without study of its subsequent cooling. Then assuming that the sphere cools suffi- 
ciently slowly so that the thermal perturbation during crystallization will be sufficiently 
small, we can assume that the Young's modulus and yield strength k are independent of tem- 
perature. The Poisson ratio ~ is also practically independent of temperature. 

The temperature distribution in the solid phase is discribed by the heat-conduction 
equation [6] 

( l + a )  at Plq. r 2 ar ~ r " - - ~ - ] ,  ( 1 . 7 )  

(t + v) ' ~ E ~ -T  o 
w h e r e  a=-: ( I - -  2\,) ( 1 - -  v) c lp I is the coupling coefficient. 

2. The crystallization front is a surface of nonremovable discontinuity. 
lowing relations are valid on the front [7] 

[p(v--D ) ] =  0; 

[ . ; , , ]  = p(v  - -  D , ) [ ~ ,  - -  D l; 

I, 2 ~ pn ].j 
[d = p (,,- P,,) LT -T u - -iT 

Thus the fol- 

( 2 . 1 )  

( 2 . 2 )  

( 2 . 3 )  

where D n = dS/dt is the velocity of the crystallization front; vl and v 2 are the absolute 
velocities of particles of the medium; Pn is the normal component of the stress tensor; [q] 
is the heat flow across the sueface S(t): 

[q! = q ~ - - %  .... Z IOTv '& ' I r=sU)  - -  ~20T~0r l r=~(O;  

U is the internal energy, the sudden change of which at the front is equal to y; the subscript 
I corresponds to the solid phase, while 2 corresponds to the liquid phase. 

Considering that ~2 = O, we have the following from (2.1): 

p l - - p o  
I , i . _  P* - Dn. ( 2 . 4 )  
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Inserting (2.4) into (2.2) yields 

I ~. I . . . .  ~ (p~ - p~)~'~,- ( 2. 5 ) 

Now, allowing for the fact that Pn2 = p(t) -- the pressure in the liquid phase --we use (2.3)- 
(2.5) to find the following relation on the front: 

d S  ( Po.--'P, ,IT, dT., (d,5''~3 P~(P~;-0~) (2 .6)  
d--t- P2u p------~-p(t) ..... %t 0--7- r=Sq.)--X2 O---~[r=S~,) + \ - ~ 7  2p~ 

It is necessary to determine components of the stress tensor o r and ae, the temperatures 
TI and T2, and the position of the front S(t) satisfying Eqs. (1.1)-(1.7) and (2.6) and the 
initial conditions at t = 0 

T.,_(r, O) :- q)(r), 5'(0)' = Ro, 
r~(Bo,  0) ' - -  ,1~(/,',,) = T o ,  I((~) = 0, p(0) = 0,  

along with the boundary conditions at r = R 

or([~,' t) = 0, T,(B, t) = To -- f(t), 

�9 R3 S a P2 W i n , , ) = ~ B - - , o ,  = + ~ ( " X - - S D .  

(2 .7)  

Here, q(r) is the initial temperature distribution in the sphere over the radius; f(t) is a 
function determining the thermal cooling of the sphere. 

3. We will solve the elastoplastic part of the problem, assuming the temperature dis- 
tribution to be known. The system of equations describing the state of the material in the 
elastic region has the general solution [8]: 

R 

2C1 2E~ ~ o ........ j T r'dr; 
r ~ + C2 (1 - - - -Tr  s (3.  1) 

T 

ion'= r ' ~ + C 2  l - - v  T O - - - ~ - " T ~  ' (3 .2)  
/ ,  

where T O = To -- TI. Inserting (3.1) and (3.2) into (1.5), from condition (2.7) we obtain 

C1-- 3(l--w) ! C, 2C1 ~ - -  [ r  " 

Thus, 

g 
O r ~ - -  

R 
2E~ ,I 

(1 -- v) r 3 T~ -- 

r 

2E (R 3 - -  ,.3) 

Inserting (3.3) into (2.5), we obtain the relation 

p (t) - - -  

R 

( t ~ 7 S 3  ' T~ 3(1--~')S 3 -{-B, 
S �9 

(3.3) 

�9 �9 P2 where B = -- -~i (Pt - -  P2) D ~ .  

At each moment of time, the boundary C between the elastic and plastic regions can be 
9 

found from the plasticity conditio n Io~--o~,Ir=c-- ]/~k. Having inserted the expressions for o y 
and @, we write 

R 
~n~ ( n -  n,'~ 3E~  f -'r E~% �9 ,, 

(1 ~ - - ~  C ~T \ B / (1 Z v )  C a . r ~  ' t - -  v - -  - ~ k .  ( 3 . 4 )  

c 

S ince  t he  t e m p e r a t u r e  d i s t r i b u t i o n  i s  known, C i s  d e t e r m i n e d  f rom ( 3 . 4 ) .  
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Using the yon Mises condition, we reduce the equilibrium equation for the plastic region 
to the form do~/dr = --4k(~r). From this 

4 
o~ = - -  ~ - ~  k i n  r + C 3. ( 3 . 5 )  

The c o n s t a n t  C3 can  be found  f rom the  c o n d i t i o n  of  c o n t i n u i t y  of  t he  normal  s t r e s s e s  on t h e  
boundary C: 

o~ [r=c = ~$ It=c" 

I n s e r t i n g  (3 .5 )  and (3 .3 )  i n t o  ( 3 . 6 ) ,  we o b t a i n  

4 2E 

Then the pressure on the front 

[ ~ - ~ o  _ ~ r ~ ] .  - -  

(3.6) 

) 4 c 4 2s R--R o ~r~ +B. 
P(t).=---~klnT+,~k+ 3(l--v) R 

At a certain moment of time, the entire region may change over to the plastic state. 
The plasticity condition for the boundary at r = R has the form 

l--v 2n(l--v) -- V~ 

Calculations show that this equality is satisfied when the crystallization front has traveled 
a distance corresponding to 0.4-0.8% of the initial radius of the sphere. Here, the pressure 
on the front 

4 k l n ~ - + B .  p (t) = - - ~  

4. The characteristic value of the displacements is taken equal to the maximum value 
reached at S = 0: 

The characteristic value of the stresses ~* = k/~. 

For the materials being studied, k ~ 104 dyn/cm 2 (in the CGS system) near the melting 
point. The characteristic temperature is the melting point, while the characteristic radius 
is R0. 

It is assumed that a sphere of radius R0 = ] cm is cooled at the rate of I deg/min. Then 
the time of crystallization in the classical problem (without allowance for thermoelastic 
stresses) is t* ~ 102 sec. We take the mean velocity D n to be equal to R0/t* ~ 10 -2 cm/sec. 
Thus, the square and the cube of the front velocity in the condition on the front can be 
ignored, since the coefficients in front of them, in dimensionless notation, are of the sec- 
ond and fourth orders of smallness compared to the coefficients in front of the other terms 
of the equation. Then (2.5) takes the form [Pn] = 0, and (2.6) becomes 

d,~ ( t%--P1 ) or~ o_r~ I 
dt P2 Y+ p----~p (t) =)'~--b-f-r ~=.s--k~T-r r=s" 

It should be noted that (p2 -- 01)p(t)/pz ~> 0 for the cases when p2 > pl and P2 < Pl- 

We will change over to dimensionless variables by means of the formulas 

- r , , '  - - r 0 '  ~ ~ '  ~ .... TT, , '  ~ . : 7 '  % = . , = '  

- p __  W S It  - r t 
P = ' ~ T ,  W= W*' ~'=--~-o' ~)= A'-~' r=--,B, t --  t*" 

The problem has the following form in dimensionless variables (the bar is omitted): 

the heat-conduction equations 

Ot -- Fo~ -~--OTr \ r'-"Or "]' i = 1 , 2 ,  
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TABLE I 

Variant I Cu AI ~g Ge si 

I 
Classical ] '35,3 ~7.5 I;38,7 ~_t~ ' ',." 581, I 

With allowance for (S. :-.: 0)l 159 1!}8 !tSI 10tl:l 1475 

92 127 554 670 919 With al lowance for (S .... 

TABLE 2 

V ariant cu 

Classical [ 1~6 

Wkh allowance for (S. ;: 0) I 2,65 

With allowance for (S ~-: o,3 U~.) I 1,53 

AI I Ag 1 Ge 

1,56 I 10,7 } 9,5 

q,3 I 15,87 [ t6,7 

~,I ,  q ')3 'I1 ') 

Si 

9,7 

24,6 

15,3 

TABLE 3 

PressuX~ <u Ag Ge 

I I 

Initial ;.( ll)'t I --0,67 / --0,47 --0 , l i t  0,08 0, l~ ! t 
Mean 

Fina_l 10 -s 

A1 

.... G0 1 --35 --85 

--0,26 

51 

0,09 

si 

t6 

0,17 

t*  )~ I t*)~ o 
F ~  " Ec~/l~'~v)~ ~ I 0 - L  F o . , - - . ,  " ~102,  

B~ (plcl + - 1 -- v "'] " RaP~';~ 

where the Fourier number Fo i expresses a certain correspondence between the rate of change in 
conditions in the environment and the rate of restructuring of the temperature field inside 
the body; 

the thermoelastoplastic part 

d.~ 2 dw b ( ~ , - - 2 ~ % ) + d ( r ~  l), 
-dr" + "7- (at --  at.) = 0, dr -- 

W 
- -  b ( ( i  - v)  % - ~"r)  + d ( r ~  - l ) ,  

k ct~'O . pO 
b = ~ (Fp_~_ 1) ~ lo-~,  ~ = ~ / r  "~ 1o-2. a l ~ ,  

where the number b shows the ratio of the plastic stresses to the elastic stresses; the number 
d expresses the correspondence between the strains caused by cooling of the sphere and the 
change in density on the crystallization front; 

the condition on the front 

dS ~7 OT~ I 01"2 
d--7- ( ~  + FIP) -- ~'z Or Ir=s --  O--7- 

l O - 1  F1 ( p O _ l ) ~ l O  1, 
~r t*X.zT o ~ t~?~,,T o 

where the numbers ~i and F~, respectively, represent the ratio of the rate of restructuring 
of the temperature field within the sphere on the crystallization front and the resulting 
thermoelastoplastic stresses to the rate of change in conditions in the environment. 
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Numerical results obtained for the materials studied are shown in Tables I-3 (crystalli- 
zation time is in seconds; the difference between the initial and final temperatures on the 
external boundary is in ~ the pressure in the liquid phase is in dyn/cm 2. These three quan- 
tities are shown in the respective tables). 

Figures 2 and 3 show the dependence of crystallization rate on time, while Figs. 4 and 5 
show the radial temperature distribution. Lines I and 2 in Figs. 2-5 correspond to the clas- 
sical problem and the problem with allowance for stresses. 

In conclusion, we thank V. V. Pukhnachev, B. D. Annin, and A. N. Cherepanov for their 
active support and valuable advice. 
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NUMERICAL STUDY OF THE ACTION OF GAS-EXPLOSIVE TUBE ON THE SURFACE 

OF A STEEL WALL 

A. I. Byvshikh, V. I. Kirko, 
and N. I. Pak 

UDC 535.211:536.4 

An experimental study was made in [I] of the feasibility of the heat treatment of the 
inside surface of a steel channel with a gas-explosive discharge. The surface layer of the 
specimen subjected to such action usually consists of a zone of solidified melt of about 20 
~m and a heat-affected zone of about 30 ~m, where ~--y-~' structural transformations have 
taken place. The explosive action of the discharge is accompanied by the removal of a sub- 
stantial amount of material from the surface of the channel. The depth of the layer removed 
may reach 100 ~m. Such values as these for the depths of the fusion and heat-affected zones 
and the removed layer are difficult to explain by the thermal effect on the wall of the bunch 
of shock-compressed gas formed in front of the gas-explosive jet of explosion products (JEP). 
The convective action of the JEP which follows the shock-compressed gas should be taken as 
the basis of the removal mechanism, as well as of the appearance of the fusion and heat- 
affected zones. In fact, the heat flow to the wall of the channel from the plasma bunch and 
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